If it's not what You are looking for type in the equation solver your own equation and let us solve it.
(5x)+(2x^2)=180
We move all terms to the left:
(5x)+(2x^2)-(180)=0
determiningTheFunctionDomain 2x^2+5x-180=0
a = 2; b = 5; c = -180;
Δ = b2-4ac
Δ = 52-4·2·(-180)
Δ = 1465
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(5)-\sqrt{1465}}{2*2}=\frac{-5-\sqrt{1465}}{4} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(5)+\sqrt{1465}}{2*2}=\frac{-5+\sqrt{1465}}{4} $
| 5x=302/x=30–5x=25 | | 2150=43(p+15) | | 180-140=-4x-10 | | 20x✖=40 | | 2(4)^x+1=1/32 | | -4w-17=-41 | | x–13.86=28.9 | | -17x+-21=6 | | -5+1/3n=0 | | w+9=19 | | y–13.86=28.9 | | -7z+13=62 | | 64-8u=0 | | 69=12n | | 265=152+x | | n-333333333=3.n= | | 3x2-4x=2x2-2x-1 | | (6x-3+(2x+13)=180 | | 3(x+8)=2(x+9) | | 13x+16=80 | | 9(2m-1)=5(m-7) | | 9u+26=-7(u-6) | | 65m=195 | | 3i+9i+21=3(i+7) | | 6(2y+5)=2(y+10) | | x-(0.3x)=190 | | 33+i=3(1−3i) | | -5+1/6b=-1 | | 32.5=3x+1 | | 7-3z-4z=8 | | 3(-1)-8=4(1+i)+5 | | -6(u+9)=-2u-42 |